DESCRIPTION

The MB3793 is an integrated circuit to monitor power voltage; it incorporates a watchdog timer. A reset signal is output when the power is cut or falls abruptly. When the power recovers normally after resetting, a power-on reset signal is output to microprocessor units (MPUs). An internal watchdog timer with two inputs for system operation diagnosis can provide a fall-safe function for various application systems. There is also a mask option that can detect voltages of 4.9 to 2.4 V in 0.1-V steps.

FEATURES

- Precise detection of power voltage fall: ±2.5%
- Detection voltage with hysteresis
- Low power dispersion: $I_{CC} = 31 \mu A$ (reference)
- Internal dual-input watchdog timer
- Watchdog-timer halt function (by inhibition pin)
- Independently-set watchdog and reset times
- Three types of packages (SOP-8pin : 2 types, SSOP-8pin : 1 type)

APPLICATION

- Arcade Amusement etc.
PIN ASSIGNMENT

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Symbol</th>
<th>Descriptions</th>
<th>Pin no.</th>
<th>Symbol</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESET</td>
<td>Outputs reset pin</td>
<td>5</td>
<td>VCC</td>
<td>Power supply pin</td>
</tr>
<tr>
<td>2</td>
<td>CTW</td>
<td>Watchdog timer monitor time setting pin</td>
<td>6</td>
<td>INH</td>
<td>Inhibit pin</td>
</tr>
<tr>
<td>3</td>
<td>CTP</td>
<td>Power-on reset hold time setting pin</td>
<td>7</td>
<td>CK2</td>
<td>Inputs clock 2 pin</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground pin</td>
<td>8</td>
<td>CK1</td>
<td>Inputs clock 1 pin</td>
</tr>
</tbody>
</table>

(TOP VIEW)

(FPT-8P-M01)
(FPT-8P-M02)
(FPT-8P-M03)
■ BLOCK DIAGRAM

I₁ = 3 μA
I₂ = 30 μA
R₁ = 295 kΩ
R₂ = 240 kΩ

CTP
RESET
INH
CTW
CK1
CK2

Output circuit
Watchdog timer
Reference voltage generator
Comp.S

To Vcc of all blocks

Vcc

To GND of all blocks

Vcc

GND

Vcc

1.24 V

GND
BLOCK DESCRIPTION

1. **Comp. S**

Comp. S is a comparator with hysteresis to compare the reference voltage with a voltage \(V_S \) that is the result of dividing the power voltage \(V_{CC} \) by resistors 1 and 2. When \(V_S \) falls below 1.24 V, a reset signal is output. This function enables the MB3793 to detect an abnormality within 1 \(\mu \)s when the power is cut or falls abruptly.

2. **Output circuit**

The output circuit contains a \(\text{RESET} \) output control comparator that compares the voltage at the CTP pin to the threshold voltage to release the \(\text{RESET} \) output if the CTP pin voltage exceeds the threshold value. Since the reset (\(\text{RESET} \)) output buffer has CMOS organization, no pull-up resistor is needed.

3. **Pulse generator**

The pulse generator generates pulses when the voltage at the CK1 and CK2 clock pins changes to High from Low level (positive-edge trigger) and exceeds the threshold voltage; it sends the clock signal to the watchdog timer.

4. **Watchdog timer**

The watchdog timer can monitor two clock pulses. Short-circuit the CK1 and CK2 clock pins to monitor a single clock pulse.

5. **Inhibition pin**

The inhibition (INH) pin forces the watchdog timer on/off. When this pin is High level, the watchdog timer is stopped.

6. **Logic circuit**

The logic circuit contains flip-flops. Flip-flop RSFF1 controls the charging and discharging of the power-on reset hold time setting capacitor (CTP). Flip-flop RSFF2 turns on/off the circuit that accelerates charging of the power-on reset hold time setting capacitor (CTP) at a reset. The RSFF2 operates only at a reset; it does not operate at a power-on reset when the power is turned on.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage*</td>
<td>V<sub>CC</sub></td>
<td>—</td>
<td>−0.3</td>
<td>+7 V</td>
</tr>
<tr>
<td>Input voltage*</td>
<td>CK1</td>
<td>V<sub>CK1</sub></td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>CK2</td>
<td>V<sub>CK2</sub></td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>INH</td>
<td>I<sub>INH</sub></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Reset output current</td>
<td>RESET</td>
<td>I<sub>OL</sub></td>
<td>—</td>
<td>−10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I<sub>OH</sub></td>
<td>—</td>
<td>+10</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P<sub>D</sub></td>
<td>T<sub>a</sub> ≤ +85°C</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T<sub>stg</sub></td>
<td>—</td>
<td>−55</td>
<td>+125</td>
</tr>
</tbody>
</table>

* The voltage is based on the ground voltage (0 V).

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>V<sub>CC</sub></td>
<td>—</td>
<td>1.2</td>
<td>6.0 V</td>
</tr>
<tr>
<td>Reset (RESET) output current</td>
<td>I<sub>OL</sub></td>
<td>—</td>
<td>−5</td>
<td>+5 mA</td>
</tr>
<tr>
<td>Power-on reset hold time setting capacity</td>
<td>C<sub>TP</sub></td>
<td>—</td>
<td>0.001</td>
<td>10 µF</td>
</tr>
<tr>
<td>Watchdog-timer monitoring time setting capacity*</td>
<td>C<sub>TW</sub></td>
<td>—</td>
<td>0.001</td>
<td>1 µF</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>T<sub>a</sub></td>
<td>—</td>
<td>−40</td>
<td>+85 °C</td>
</tr>
</tbody>
</table>

* The watchdog timer monitor time range depends on the rating of the setting capacitor.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.
ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(V$_{CC}$ = +3.3 V, Ta = +25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply current</td>
<td>I_{CC}</td>
<td>After exit from reset</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Detection voltage</td>
<td>V_{SL}</td>
<td>V_{CC} falling</td>
<td>Ta = +25°C</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ta = −40°C to +85°C</td>
<td>(2.59)*</td>
</tr>
<tr>
<td></td>
<td>V_{SH}</td>
<td>V_{CC} rising</td>
<td>Ta = +25°C</td>
<td>2.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ta = −40°C to +85°C</td>
<td>(2.65)*</td>
</tr>
<tr>
<td>Detection voltage hysteresis difference</td>
<td>V_{SHYS}</td>
<td>$V_{SH} - V_{SL}$</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>Clock-input threshold voltage</td>
<td>V_{CH}</td>
<td>CK rising</td>
<td>(0.7)*</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CK falling</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Clock-input hysteresis</td>
<td>V_{CHTS}</td>
<td>—</td>
<td>(0.1)*</td>
<td>0.3</td>
</tr>
<tr>
<td>Inhibition-input voltage</td>
<td>V_{IH}</td>
<td>—</td>
<td>2.2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>V_{IL}</td>
<td>—</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>Input current (CK1, CK2, INH)</td>
<td>I_{IH}</td>
<td>$V_{CK} = 5$ V</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>I_{IL}</td>
<td>$V_{CK} = 0$ V</td>
<td>−1.0</td>
<td>0</td>
</tr>
<tr>
<td>Reset output voltage</td>
<td>V_{OH}</td>
<td>$I_{RESET} = −5$ mA</td>
<td>2.8</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>V_{OL}</td>
<td>$I_{RESET} = +5$ mA</td>
<td>—</td>
<td>0.12</td>
</tr>
<tr>
<td>Reset-output minimum power voltage</td>
<td>V_{CCL}</td>
<td>$I_{RESET} = +50$ μA</td>
<td>—</td>
<td>0.8</td>
</tr>
</tbody>
</table>

*1: The values enclosed in parentheses () are setting assurance values.

2. AC Characteristics

(V$_{CC}$ = +3.3 V, Ta = +25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-on reset hold time</td>
<td>t_{PR}</td>
<td>$C_{TP} = 0.1$ μF</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>V_{CC} input pulse width</td>
<td>t_{PH}</td>
<td>$C_{TP} = 0.1$ μF</td>
<td>(8)*</td>
<td>—</td>
</tr>
<tr>
<td>V_{CC} delay time</td>
<td>t_{PD}</td>
<td>$C_{TP} = 0.1$ μF</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Watchdog timer monitor time</td>
<td>t_{WD}</td>
<td>$C_{TW} = 0.01$ μF, $C_{TP} = 0.1$ μF</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Watchdog timer reset time</td>
<td>t_{WR}</td>
<td>$C_{TP} = 0.1$ μF</td>
<td>2</td>
<td>5.5</td>
</tr>
<tr>
<td>Clock input pulse width</td>
<td>t_{CKW}</td>
<td>—</td>
<td>500</td>
<td>—</td>
</tr>
<tr>
<td>Clock input pulse cycle</td>
<td>t_{CKT}</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Reset (RESET) output transition time</td>
<td>Rising</td>
<td>t_{r}^{*1}</td>
<td>$C_L = 50$ pF</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Falling</td>
<td>t_{f}^{*1}</td>
<td>$C_L = 50$ pF</td>
<td>—</td>
</tr>
</tbody>
</table>

*1: The voltage range is 10% to 90% at testing the reset output transition time.

*2: The values enclosed in parentheses () are setting assurance values.
DIAGRAM

1. Basic operation (Positive clock pulse)
2. Basic operation (Negative clock pulse)
3. Single-clock input monitoring (Positive clock pulse)

Note: The MB3793 can monitor only one clock. The MB3793 checks the clock signal at every other input pulse. Therefore, set watchdog timer monitor time tWD to the time that allows the MB3793 to monitor the period twice as long as the input clock pulse.
4. Inhibition operation (Positive clock pulse)
5. Clock pulse input supplementation (Positive clock pulse)

- OPERATION SEQUENCE
 1. Positive clock pulse input
 See “1. Basic operation (positive clock pulse)” under “■ DIAGRAM.”
 2. Negative clock pulse input
 See “2. Basic operation (negative clock pulse)” under “■ DIAGRAM.”
 The MB3793 operates in the same way whether it inputs positive or negative pulses.
 3. Clock monitoring
 To use the MB3793 while monitoring only one clock, connect clock pins CK1 and CK2.
 Although the MB3793 operates basically in the same way as when monitoring two clocks, it monitors the clock signal at every other input pulse.
 See “3. Single-clock input monitoring (positive clock pulse)” under “■ DIAGRAM.”
 4. Description of Operations
 The numbers given to the following items correspond to numbers (1) to (13) used in “■ DIAGRAM.”
 1. The MB3793 outputs a reset signal when the supply voltage (V_{CC}) reaches about 0.8 V (V_{CCL})
 2. If V_{CC} reaches or exceeds the rise-time detected voltage V_{SH}, the MB3793 starts charging the power-on reset hold time setting capacitor C_{TR}. At this time, the output remains in a reset state. The V_{SH} value is about 2.76 V.
(3) When C_{TP} has been charged for a certain period of time T_{PR} (until the CTP pin voltage exceeds the threshold voltage V_{th} after the start of charging), the MB3793 cancels the reset (setting the $RESET$ pin to “H” level from “L” level).

The V_{th} value is about 2.4 V with $V_{CC} = 3.3$ V

The power-on reset hold time t_{PR} is set with the following equation:

$$t_{PR} (\text{ms}) = A \times C_{TP} (\mu\text{F})$$

The value of A is about 750 with $V_{CC} = 3.3$ V and about 700 with $V_{CC} = 3.0$ V. The MB3793 also starts charging the watchdog time setting capacitor (C_{TW}).

(4) When the voltage at the watchdog timer monitor time setting pin C_{TW} reaches the “H” level threshold voltage V_{H}, the C_{TW} switches from the charge state to the discharge state.

The value of V_{H} is always about 1.24 V regardless of the detected voltage.

(5) If the $CK2$ pin inputs a clock pulse (positive edge trigger) when the C_{TW} is being discharged in the $CK1-CK2$ order or simultaneously, the C_{TW} switches from the discharge state to the charge state.

The MB3793 repeats operations (4) and (5) as long as the $CK1/CK2$ pin inputs clock pulses with the system logic circuit operating normally.

(6) If no clock pulse is fed to the $CK1$ or $CK2$ pin within the watchdog timer monitor time t_{WD} due to some problem with the system logic circuit, the C_{TW} pin is set to the “L” level threshold voltage V_{L} or less and the MB3793 outputs a reset signal (setting the $RESET$ pin to “L” level from “H” level).

The V_{L} value is always about 0.24 V regardless of the detected voltage.

The watchdog timer monitor time t_{WD} is set with the following equation:

$$t_{WD} (\text{ms}) = B \times C_{TW} (\mu\text{F})$$

The value of B is hardly affected by the power supply voltage; it is about 1600 with $V_{CC} = 3.0$ V to 3.3 V.

(7) When a certain period of time t_{WR} has passed (until the CTP pin voltage reaches or exceeds V_{th} again after recharging the C_{TP}), the MB3793 cancels the reset signal and starts operating the watchdog timer.

The watchdog timer monitor reset time t_{WR} is set with the following equation:

$$t_{WR} (\text{ms}) = D \times C_{TP} (\mu\text{F})$$

The value of D is 55 with $V_{CC} = 3.3$ V and about 50 with $V_{CC} = 3.0$ V.

The MB3793 repeats operations (4) and (5) as long as the $CK1/CK2$ pin inputs clock pulses. If no clock pulse is input, the MB3793 repeats operations (6) and (7).

(8) If V_{CC} is lowered to the fall-time detected voltage (V_{SL}) or less, the CTP pin voltage decreases and the MB3793 outputs a reset signal (setting the $RESET$ pin to “L” level from “H” level).

The V_{SL} value is 2.7 V

(9) When V_{CC} reaches or exceeds V_{SH} again, the MB3793 starts charging the C_{TP}.

(10) When the CTP pin voltage reaches or exceeds V_{th}, the MB3793 cancels the reset and restarts operating the watchdog timer. It repeats operations (4) and (5) as long as the $CK1/CK2$ pin inputs clock pulses.

(11) Making the inhibit pin active (setting the INH pin to “H” from “L”) forces the watchdog timer to stop operation. This stops only the watchdog timer, leaving the MB3793 monitoring V_{CC} (operations (8) to (10)). The watchdog timer remains inactive unless the inhibit input is canceled.

(12) Canceling the inhibit input (setting the INH pin to “L” from “H”) restarts the watchdog timer.

(13) The reset signal is output when the power supply is turned off to set V_{CC} to V_{SL} or less.
TYPICAL CHARACTERISTICS

Power supply current vs. power supply voltage

- **Watchdog timer monitoring**
 - $V_{INH} = 0$ V
 - Duty = 10%
 - $f = 1$ kHz
 - $V_L = 0$ V
 - $V_H = V_{CC}$
 - $C_{TW} = 0.01 \mu F$
 - $C_{TP} = 0.1 \mu F$

Detection voltage vs. operating ambient temperature

- V_{SH} ($Ta = +25^\circ C$)
- V_{SL} ($Ta = +25^\circ C$)
- V_{SH} ($Ta = +85^\circ C$)
- V_{SL} ($Ta = +85^\circ C$)

Detection voltage vs. power supply voltage

- $Ta = -40^\circ C$ to $+85^\circ C$
- V_{INH}
- V_{CC}

Reset output voltage vs. reset output current

- **(P-MOS side)**
 - V_{RESET}
 - I_{RESET} (mA)
- **(N-MOS side)**
 - V_{RESET} (V)
 - I_{RESET} (mA)

Note: Without writing the value clearly, $V_{CC} = 3.3$ (V), $C_{TP} = 0.1$ (µF), $C_{TW} = 0.01$ (µF).

(Continued)
Pull-up resistance 100 kΩ

Ta = +85 °C
Ta = +25 °C
Ta = −40 °C

Power supply voltage Vcc (V)
Reset output voltage vs. power supply voltage

Ta = −40 °C to +85 °C
Ta = +25 °C
MAX
TYP
MIN

Operating ambient temperature Ta (°C)

Power-on reset hold time vs. Operating ambient temperature
(When Vcc rising)

Watchdog timer reset time vs. Operating ambient temperature
(When monitoring)

MAX
TYP
MIN

Operating ambient temperature Ta (°C)

Watchdog timer monitoring time vs. Operating ambient temperature

MAX
TYP
MIN

Operating ambient temperature Ta (°C)
(Continued)

Power-on reset hold time vs. C_{TP} capacitance

![Graph showing Power-on reset hold time vs. C_{TP} capacitance]

- $T_a = -40^\circ C$
- $T_a = +25^\circ C$
- $T_a = +85^\circ C$

Watchdog timer reset time vs. C_{TP} capacitance

![Graph showing Watchdog timer reset time vs. C_{TP} capacitance]

- $T_a = -40^\circ C$
- $T_a = +25^\circ C$
- $T_a = +85^\circ C$

Watchdog timer monitoring time vs. C_{TW} capacitance

![Graph showing Watchdog timer monitoring time vs. C_{TW} capacitance]

- $T_a = -40^\circ C$
- $T_a = +25^\circ C$
- $T_a = +85^\circ C$
APPLICATION EXAMPLE

1. Supply voltage monitor and watchdog timer (1-clock monitor)

>: Use a capacitor with less leakage current.

The MB3793 monitors the clock (CK1, CK2) at every other input pulse.

2. Supply voltage monitor and watchdog timer stop

>: Use a capacitor with less leakage current.
1. **Equation of time-setting capacitances** (C_{TP} and C_{TW}) and set time

- t_{PR} [ms] $\leq A \times C_{TP}$ [μF]
- t_{WD} [ms] $\leq B \times C_{TW}$ [μF]
- t_{WR} [ms] $\leq D \times C_{TP}$ [μF]

Values of A, B, C, and D

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>1600</td>
<td>0</td>
<td>55</td>
<td>$V_{CC} = 3.3$ V</td>
</tr>
<tr>
<td>700</td>
<td>1600</td>
<td>0</td>
<td>50</td>
<td>$V_{CC} = 3.0$ V</td>
</tr>
</tbody>
</table>

2. **Example (when $C_{TP} = 0.1$ μF and $C_{TW} = 0.01$ μF)**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>$V_{CC} = 3.3$ V</th>
<th>$V_{CC} = 3.0$ V</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PR}</td>
<td>≤ 75</td>
<td>≤ 70</td>
</tr>
<tr>
<td>t_{WD}</td>
<td>≤ 16</td>
<td>≤ 16</td>
</tr>
<tr>
<td>t_{WR}</td>
<td>≤ 5.5</td>
<td>≤ 5</td>
</tr>
</tbody>
</table>

*: Use a capacitor with less leakage current.
NOTES ON USE

- Take account of common impedance when designing the earth line on a printed wiring board.
- Take measures against static electricity.
 - For semiconductors, use antistatic or conductive containers.
 - When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.
 - The work table, tools and measuring instruments must be grounded.
 - The worker must put on a grounding device containing 250 kΩ to 1 MΩ resistors in series.
- Do not apply a negative voltage
 - Applying a negative voltage of −0.3 V or less to an LSI may generate a parasitic transistor, resulting in malfunction.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part number</th>
<th>Package</th>
<th>Marking</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB3793-27APF</td>
<td>8-pin Plastic SOP (FPT-8P-M01)</td>
<td>3793-Y</td>
<td>conventional version</td>
</tr>
<tr>
<td>MB3793-27APNF</td>
<td>8-pin Plastic SOP (FPT-8P-M02)</td>
<td>3793-Y</td>
<td>conventional version</td>
</tr>
<tr>
<td>MB3793-27APFV</td>
<td>8-pin Plastic SSOP (FPT-8P-M03)</td>
<td>93-Y</td>
<td>conventional version</td>
</tr>
<tr>
<td>MB3793-27APF</td>
<td>8-pin Plastic SOP (FPT-8P-M01)</td>
<td>3793-Y</td>
<td>Lead Free version</td>
</tr>
<tr>
<td>MB3793-27APNF</td>
<td>8-pin Plastic SOP (FPT-8P-M02)</td>
<td>3793-Y</td>
<td>Lead Free version</td>
</tr>
<tr>
<td>MB3793-27APFV</td>
<td>8-pin Plastic SSOP (FPT-8P-M03)</td>
<td>93-Y</td>
<td>Lead Free version</td>
</tr>
</tbody>
</table>

RoHS Compliance Information of Lead (Pb) Free version

The LSI products of Fujitsu Microelectronics with “E1” are compliant with RoHS Directive , and has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB) , and polybrominated diphenyl ethers (PBDE) .

The product that conforms to this standard is added “E1” at the end of the part number.
MARKING FORMAT (Lead Free version)

- **3793 – Y**
 - Lead Free version
 - **E1XXXX**
 - INDEX
 - SOP-8 (FPT-8P-M01)

- **3793 – Y**
 - Lead Free version
 - **XXX**
 - SOP-8 (FPT-8P-M02)

- **93 – Y**
 - Lead Free version
 - **1 XXX**
 - INDEX
 - SSOP-8 (FPT-8P-M03)
LABELING SAMPLE (Lead free version)

MB123456P - 789 - GE1
(3N) 1 MB123456P-789-GE1 1000
(3N) 2 1561190005 107210
1,000 PCS
2006/03/01 ASSEMBLED IN JAPAN
MB123456P - 789 - GE1
1561190005
0605 - Z01A 1000

Lead Free version

lead-free mark
JEITA logo JEDEC logo
MB3793-27APF-1 E1, MB3793-27APNF-1 E1, MB3793-27APFV-1 E1

RECOMMENDED CONDITIONS OF MOISTURE SENSITIVITY LEVEL

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting Method</td>
<td>IR (infrared reflow), Manual soldering (partial heating method)</td>
</tr>
<tr>
<td>Mounting times</td>
<td>2 times</td>
</tr>
<tr>
<td>Storage period</td>
<td></td>
</tr>
<tr>
<td>Before opening</td>
<td>Please use it within two years after Manufacture.</td>
</tr>
<tr>
<td>From opening to the 2nd reflow</td>
<td>Less than 8 days</td>
</tr>
<tr>
<td>When the storage period after opening was exceeded</td>
<td>Please processes within 8 days after baking (125 °C, 24h)</td>
</tr>
<tr>
<td>Storage conditions</td>
<td>5 °C to 30 °C, 70%RH or less (the lowest possible humidity)</td>
</tr>
</tbody>
</table>

Temperature Profile for FJ Standard IR Reflow

1. **IR (infrared reflow)**

 ![Temperature Profile Diagram](image)

 - **(a) Temperature Increase gradient**: Average 1 °C/s to 4 °C/s
 - **(b) Preliminary heating**: Temperature 170 °C to 190 °C, 60s to 180s
 - **(c) Temperature Increase gradient**: Average 1 °C/s to 4 °C/s
 - **(d) Actual heating**: Temperature 260 °C MAX; 255 °C or more, 10s or less
 - **(d')**: Temperature 230 °C or more, 40s or less
 - **(e) Cooling**: Natural cooling or forced cooling

 Note: Temperature: the top of the package body

2. **Manual soldering (partial heating method)**

 Conditions: Temperature 400 °C MAX
 Times: 5 s max/pin
PACKAGE DIMENSIONS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-pin plastic SOP</td>
<td></td>
</tr>
<tr>
<td>Lead pitch</td>
<td>1.27 mm</td>
</tr>
<tr>
<td>Package width × package length</td>
<td>5.3 × 6.35 mm</td>
</tr>
<tr>
<td>Lead shape</td>
<td>Gullwing</td>
</tr>
<tr>
<td>Sealing method</td>
<td>Plastic mold</td>
</tr>
<tr>
<td>Mounting height</td>
<td>2.25 mm MAX</td>
</tr>
<tr>
<td>Weight</td>
<td>0.10 g</td>
</tr>
<tr>
<td>Code (Reference)</td>
<td>P-SOP8-5.3×6.35-1.27</td>
</tr>
</tbody>
</table>

Note 1): These dimensions include resin protrusion.
Note 2): These dimensions do not include resin protrusion.
Note 3): Pins width and pins thickness include plating thickness.
Note 4): Pins width do not include tie bar cutting remainder.

Dimensions in mm (inches).
Note: The values in parentheses are reference values.

© 2002 FUJITSU LIMITED F80025-c-6-7
8-pin plastic SOP

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Package width ×</td>
<td>Lead pitch</td>
</tr>
<tr>
<td></td>
<td>1.27 mm</td>
</tr>
<tr>
<td>package length</td>
<td></td>
</tr>
<tr>
<td>3.9 × 5.05 mm</td>
<td></td>
</tr>
<tr>
<td>Lead shape</td>
<td>Gullwing</td>
</tr>
<tr>
<td>Sealing method</td>
<td>Plastic mold</td>
</tr>
<tr>
<td>Mounting height</td>
<td>1.75 mm MAX</td>
</tr>
<tr>
<td>Weight</td>
<td>0.06 g</td>
</tr>
</tbody>
</table>

(FPT-8P-M02)

Note 1) *1 : These dimensions include resin protrusion.
Note 2) *2 : These dimensions do not include resin protrusion.
Note 3) Pins width and pins thickness include plating thickness.
Note 4) Pins width do not include tie bar cutting remainder.

Dimensions in mm (inches).
Note: The values in parentheses are reference values.
8-pin plastic SSOP (FPT-8P-M03)

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead pitch</td>
<td>0.80 mm</td>
</tr>
<tr>
<td>Package width × package length</td>
<td>4.2 × 3.5 mm</td>
</tr>
<tr>
<td>Lead shape</td>
<td>Gullwing</td>
</tr>
<tr>
<td>Sealing method</td>
<td>Plastic mold</td>
</tr>
<tr>
<td>Mounting height</td>
<td>1.45 mm MAX</td>
</tr>
<tr>
<td>Weight</td>
<td>0.04 g</td>
</tr>
<tr>
<td>Code (Reference)</td>
<td>P-SSOP8-4.2×3.5-0.80</td>
</tr>
</tbody>
</table>

Details of “A” part

- **Dimensions in mm (inches):**
 - (Mounting height): 1.25 (0.049)
 - (Stand off): 0.10 ± 0.05 (0.004 ± 0.002)

Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max).
Note 2) *2 : These dimensions do not include resin protrusion.
Note 3) Pins width and pins thickness include plating thickness.
Note 4) Pins width do not include tie bar cutting remainder.
The contents of this document are subject to change without notice. Customers are advised to consult with sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party’s intellectual property right or other right of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws. The company names and brand names herein are the trademarks or registered trademarks of their respective owners.