From Silicon Labs: "IoT Hero Cognosos Helps Fleet Lot Operators Find and Track Vehicles"

Sep 19, 2018

Recently, we had the chance to talk to Jim Stratigos, founder and CTO of Cognosos, an IoT start-up that has solved a big problem for automotive car dealers and auction operators. Fleet lots such as these – along with vehicle processing centers - can span hundreds of acres, across multiple locations, and can hold anywhere from 1,000-25,000 cars on-site at any given moment, creating significant challenges in locating and tracking these valuable assets. Cars are moved regularly for reconditioning, repairs, test drives, or to get ready for auctioning. Up until now, lot operators used expensive and often unreliable asset tracking technology such as RFID or Wi-Fi, or spent hours trying to manually locate cars throughout the day. Cognosos has completely changed the experience by creating an IoT wireless inventory tracking solution, allowing users to do quick searches online or on smartphones and see in real time the location and movement history of any car on the lot.

Jim explains below how the idea came about, what his team has learned since launching 18 months ago, and shares new solutions the company plans to tackle in the near future.

How did Cognosos get started?

In 2012, in the days before IoT, my two co-founders and I were looking at wireless sensor networks. We saw a lot of academic research in this area, yet few commercial deployments. We had some ideas to make the transition from the lab to the real-world happen. One of the research areas of interest to us was software defined radio (SDR), which has been used in radio astronomy for decades. We realized we could apply the same technology to real-world problems, such as extending the range and battery life of wireless networks. With this idea in mind, we reached out to Georgia Tech (Jim is an alumni and has mentored university start-ups).  We started working with the Smart Antenna Research Lab within the School of Electrical and Computer Engineering at Georgia Tech. We helped the group raise some grant funding to research how to use SDR and cloud-based signal processing to make wireless networks go further and have longer battery life.

Tell me a little bit about SDR – how does this solve range issues?

The nice thing about SDR is that it allows the physical layer of a wireless communications channel to be totally determined by software; therefore, it provides engineers with a clean slate without being constrained by silicon. That’s why this approach was attractive, we were able to pick frequencies, for example, with superior outdoor propagation, we could design our own modulation and coding formats, etc. with the intent to optimize all aspects of the performance. Basically, it gives you a platform to write your way into a physical wireless layer without having to develop custom chips. At the same time, an SDR-based wireless network can be very robust to interference and achieve an order of magnitude higher channel utilization than common wireless technologies.

Did you have a business solution in mind for the technology? Was there a specific problem you saw in a particular market, or did the application come later?

It came later. We were aware of a general class of problems facing agriculture, energy management, waste management, and water management, which all seemed to be a fit for low-cost wireless sensor networks. But it wasn’t clear five years ago which one would be commercially viable. We had the good fortune of having some really smart people, yet not much money, but we were able to rapidly prototype potential applications and show them to potential investors and customers. We were told over and over again that it looked interesting, but it was not really important. So we eventually pivoted and discovered there was a real need in the automotive industry to use wireless sensor networks to actually find cars. As you know, it’s normal for early stage companies to pivot, and we certainly did. We moved away from a broad “we can do anything wireless business model,” and went after a specific problem in a specific industry.

Why did you select the automotive industry?

It was a need articulated by our first customer, Manheim Auctions, a division of Cox Automotive. They came to us with the problem of losing cars. We assumed people were stealing them, but they explained it was the sheer amount of cars in one place combined with the fact that they had to be moved regularly for repairs, auction lane placement, etc. Most of the larger companies like Manheim have been trying all kinds of technologies to solve this problem, such as bar codes, RFIDs and even Wi-FI tracking and cellular systems, yet none of them were cost-effective or could scale. Here was a problem we didn’t even know existed.

What type of business impact feedback are you hearing from customers?

One customer told us recently that the typical 3-4 hours it took to locate a set of cars was reduced to 30 minutes. We have a lot of great data saying its reducing costs and improving the customers’ experience. We are also branching out into other markets where knowing the location of high valued assets is critical to driving customer satisfaction and reducing costs.

When you were developing the platform, were there any unforeseen design challenges?

One of the things that stood out to me is our use of GPS to find the location of the car. Everyone knows GPS receivers demand a lot of power, and we are dealing with battery powered devices, so you don’t want to leave the receiver on any longer than you have to. We naively thought early on that all we had to do was turn the receiver on, get the location, and you’re done.  It’s actually much, much more complicated than that. Because of this issue, we ended up writing sophisticated algorithms to take the GPS data from the receiver and determine when it was accurate enough to turn off the receiver. 

Tell me about the device itself. How simple is it for the operator to get up and running, and what’s the day-to-day interaction with the equipment?

We put a lot of effort into making it as simple as possible because our customers are not engineers. The user simply scans or types in the VIN number of the car, SKU/unit number, or description into a smart phone, and the car will show up on a map with instructions on how to get to it. Our RadioTrax device is placed on the visor of every car on the lot. It sends a sub-GHz radio message using our patented wireless technology that includes the GPS location of the car any time the car moves by using an accelerometer to detect motion. The devices are also upgradeable over-the-air – we have a unique OTA firmware update technology that simplifies the challenge of updating the firmware. We can do thousands of devices at once.

From an installation standpoint its very simple – our gateways are as easy to install as a router and connect to a simple roof-mounted antenna . We either use our own staff or contract third-party installation groups – some of our customers have even done the installation themselves.  

We have both web and mobile applications, which is paramount because the interface is all the customer is going to see.

What’s your experience with Silicon Labs’ Flex Gecko?

In the early days, all of our prototypes were conventional wireless devices with a separate MCU, separate transceiver, drivers, etc. Then we became aware of the Silicon Labs Leopard Gecko, which has a transceiver and an MCU in the same package. When you’re in this business, anything you can do to reduce the number of components and the cost of device, you jump on. Certainly following the introduction of the Flex Gecko product line was an opportunity for us to further reduce the size, cost and complexity of our devices.

Silicon Labs’ level of support has been excellent. It’s important when you’re a small shop like us to work with a vendor like Silicon Labs who is willing to give you the support that you need - answer questions, jump in when there is a problem identified, get the samples you need quickly - that’s critical.

What are some other applications you are interested in pursuing?

When it comes to tracking assets outdoors, there are a number of other sub-verticals similar to automotive. For example, imagine any large outdoor area on hundreds or thousands of acres maintaining valuable things with wheels on them, such as construction sites, airports, ports, etc. We also see plenty of opportunities for our technology to be deployed indoors, such as buildings, retails, sports arenas and healthcare facilities.

What do you think IoT holds for companies managing large amounts of assets? Do you think IoT could manage large scale equipment as a subscription service?

It’s definitely coming. One of the trends we see emerging is the IoT industry encroaching on what was traditionally the RFID market. For example, RFID technologies scan equipment into a job site, but it can’t tell the operator where the tool is actually located on the site.  The IoT curve is heading in the right direction, thanks to Moore’s Law and efforts from companies like Silicon Labs who integrate more and more functions onto a single silicon die. 




Looking to integrate Silicon Labs products with your design? Our Applications Engineers offer free design and technical help for your latest designs. Contact us today!



Symmetry Electronics Logo


Why partner with Symmetry Electronics? Symmetry's technical staff is specially trained by our suppliers to provide a comprehensive level of technical support. Our in-house Applications Engineers provide free design services to help customers early in the design cycle, providing solutions to save them time, money and frustration. Contact Symmetry for more information.


Sign up to get tech news, product updates and store promos from Symmetry Electronics.


Blog Archive


Previously Viewed Products